Search results
Results from the WOW.Com Content Network
In mathematics, a characterization of an object is a set of conditions that, while possibly different from the definition of the object, is logically equivalent to it. [1] To say that "Property P characterizes object X" is to say that not only does X have property P, but that X is the only thing that has property P (i.e., P is a defining ...
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...
The typical diagram of the definition of a universal morphism. In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them.
The preceding kinds of definitions, which had prevailed since Aristotle's time, [4] were abandoned in the 19th century as new branches of mathematics were developed, which bore no obvious relation to measurement or the physical world, such as group theory, projective geometry, [3] and non-Euclidean geometry.
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past.Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales.
These problems were also studied by mathematicians, and this led to establish mathematical logic as a new area of mathematics, consisting of providing mathematical definitions to logics (sets of inference rules), mathematical and logical theories, theorems, and proofs, and of using mathematical methods to prove theorems about these concepts.
In mathematics, the associative property [1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.