Search results
Results from the WOW.Com Content Network
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
Finally, if a cycle length longer than 2 128 is required, the generator can be extended with an array of sub-generators. One is chosen (in rotation) to be added to the main generator's output, and every time the main generator's state reaches zero, the sub-generators are cycled in a pattern which provides a period exponential in the total state ...
Permuted Congruential Generator (PCG) 2014 M. E. O'Neill [32] A modification of LCG. Random Cycle Bit Generator (RCB) 2016 R. Cookman [33] RCB is described as a bit pattern generator made to overcome some of the shortcomings with Mersenne Twister and short periods/bit length restriction of shift/modulo generators.
ACORN generator proposed recently […] is in fact equivalent to a MLCG with matrix A such that a~ = 1 for i 2 j, aq = 0 otherwise" [10] but the analysis is not taken further. ACORN is not the same as ACG (Additive Congruential Generator) and should not be confused with it - ACG appears to have been used for a variant of the LCG ( Linear ...
An approach to nonlinear congruential methods of generating uniform pseudorandom numbers in the interval [0,1) is the Inversive congruential generator with prime modulus. A generalization for arbitrary composite moduli m = p 1 , … p r {\displaystyle m=p_{1},\dots p_{r}} with arbitrary distinct primes p 1 , … , p r ≥ 5 {\displaystyle p_{1 ...
The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is
In computational number theory, Marsaglia's theorem connects modular arithmetic and analytic geometry to describe the flaws with the pseudorandom numbers resulting from a linear congruential generator. As a direct consequence, it is now widely considered that linear congruential generators are weak for the purpose of generating random numbers.
It means that each generator is associated to a fixed IMP polynomial. Such a condition is sufficient for maximum period of each inversive congruential generator [8] and finally for maximum period of the compound generator. The construction of IMP polynomials is the most efficient approach to find parameters for inversive congruential generator ...