Search results
Results from the WOW.Com Content Network
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
Finally, if a cycle length longer than 2 128 is required, the generator can be extended with an array of sub-generators. One is chosen (in rotation) to be added to the main generator's output, and every time the main generator's state reaches zero, the sub-generators are cycled in a pattern which provides a period exponential in the total state ...
Permuted Congruential Generator (PCG) 2014 M. E. O'Neill [32] A modification of LCG. Random Cycle Bit Generator (RCB) 2016 R. Cookman [33] RCB is described as a bit pattern generator made to overcome some of the shortcomings with Mersenne Twister and short periods/bit length restriction of shift/modulo generators.
ACORN generator proposed recently […] is in fact equivalent to a MLCG with matrix A such that a~ = 1 for i 2 j, aq = 0 otherwise" [10] but the analysis is not taken further. ACORN is not the same as ACG (Additive Congruential Generator) and should not be confused with it - ACG appears to have been used for a variant of the LCG ( Linear ...
In computational number theory, Marsaglia's theorem connects modular arithmetic and analytic geometry to describe the flaws with the pseudorandom numbers resulting from a linear congruential generator. As a direct consequence, it is now widely considered that linear congruential generators are weak for the purpose of generating random numbers.
The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is
A combined linear congruential generator (CLCG) is a pseudo-random number generator algorithm based on combining two or more linear congruential generators (LCG). A traditional LCG has a period which is inadequate for complex system simulation. [ 1 ]
A linear congruential generator with base b = 2 32 is implemented as + = (+) , where c is a constant. If a ≡ 1 (mod 4) and c is odd, the resulting base-2 32 congruential sequence will have period 2 32. [4] This can be computed using only the low 32 bits of the product of a and the current x.