Search results
Results from the WOW.Com Content Network
In statistics, where one seeks estimates for unknown parameters based on available data gained from samples, the sample mean serves as an estimate for the expectation, and is itself a random variable. In such settings, the sample mean is considered to meet the desirable criterion for a "good" estimator in being unbiased; that is, the expected ...
Like the statistical mean and median, the mode is a way of expressing, in a (usually) single number, important information about a random variable or a population. The numerical value of the mode is the same as that of the mean and median in a normal distribution , and it may be very different in highly skewed distributions .
Being a function of random variables, the sample variance is itself a random variable, and it is natural to study its distribution. In the case that Y i are independent observations from a normal distribution , Cochran's theorem shows that the unbiased sample variance S 2 follows a scaled chi-squared distribution (see also: asymptotic ...
If the random variable is denoted by , then the mean is also known as the expected value of (denoted ()). For a discrete probability distribution , the mean is given by ∑ x P ( x ) {\displaystyle \textstyle \sum xP(x)} , where the sum is taken over all possible values of the random variable and P ( x ) {\displaystyle P(x)} is the probability ...
The sample mean and the sample covariance matrix are unbiased estimates of the mean and the covariance matrix of the random vector, a row vector whose j th element (j = 1, ..., K) is one of the random variables. [1] The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample ...
where μ is the expected value of the random variables, σ equals their distribution's standard deviation divided by n 1 ⁄ 2, and n is the number of random variables. The standard deviation therefore is simply a scaling variable that adjusts how broad the curve will be, though it also appears in the normalizing constant .
Mode: for a discrete random variable, the value with highest probability; for an absolutely continuous random variable, a location at which the probability density function has a local peak. Quantile : the q-quantile is the value x {\displaystyle x} such that P ( X < x ) = q {\displaystyle P(X<x)=q} .
Let be a discrete random variable with probability mass function depending on a parameter .Then the function = = (=),considered as a function of , is the likelihood function, given the outcome of the random variable .