Search results
Results from the WOW.Com Content Network
A typical method of performing a measurement is to transfer a 'large' file from one system to another system and measure the time required to complete the transfer or copy of the file. The throughput is then calculated by dividing the file size by the time to get the throughput in megabits , kilobits , or bits per second.
The consumed bandwidth in bit/s, corresponds to achieved throughput or goodput, i.e., the average rate of successful data transfer through a communication path.The consumed bandwidth can be affected by technologies such as bandwidth shaping, bandwidth management, bandwidth throttling, bandwidth cap, bandwidth allocation (for example bandwidth allocation protocol and dynamic bandwidth ...
In telecommunications and computing, bit rate (bitrate or as a variable R) is the number of bits that are conveyed or processed per unit of time. [1]The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). [2]
The ISQ symbols for the bit and byte are bit and B, respectively.In the context of data-rate units, one byte consists of 8 bits, and is synonymous with the unit octet.The abbreviation bps is often used to mean bit/s, so that when a 1 Mbps connection is advertised, it usually means that the maximum achievable bandwidth is 1 Mbit/s (one million bits per second), which is 0.125 MB/s (megabyte per ...
Percent bandwidth is a less meaningful measure in wideband applications. A percent bandwidth of 100% corresponds to a ratio bandwidth of 3:1. All higher ratios up to infinity are compressed into the range 100–200%. Ratio bandwidth is often expressed in octaves (i.e., as a frequency level) for wideband applications.
In order to calculate the data transmission rate, one must multiply the transfer rate by the information channel width. For example, a data bus eight-bytes wide (64 bits) by definition transfers eight bytes in each transfer operation; at a transfer rate of 1 GT/s, the data rate would be 8 × 10 9 B /s, i.e. 8 GB/s, or approximately 7.45 GiB /s.
Speedup in latency is defined by the following formula: [2] = =, where S latency is the speedup in latency of the architecture 2 with respect to the architecture 1; L 1 is the latency of the architecture 1; L 2 is the latency of the architecture 2.
A duty cycle or power cycle is the fraction of one period in which a signal or system is active. [1] [2] [3] Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a formula, a duty cycle (%) may be expressed as: = % [2]