Search results
Results from the WOW.Com Content Network
Stokes' law is the basis of the falling-sphere viscometer, in which the fluid is stationary in a vertical glass tube. A sphere of known size and density is allowed to descend through the liquid. If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube.
Terminal velocity is the maximum speed attainable by an object as it falls through a fluid ... The expression for the drag force given by equation is called Stokes' law.
Terminal velocity is achieved when the drag force is equal in magnitude but opposite in direction to the force propelling the object. Shown is a sphere in Stokes flow, at very low Reynolds number . Stokes flow (named after George Gabriel Stokes ), also named creeping flow or creeping motion , [ 1 ] is a type of fluid flow where advective ...
Terminal velocity for very small objects (pollen, etc.) at low Reynolds numbers is determined by Stokes law. In short, terminal velocity is higher for larger creatures, and thus potentially more deadly.
For dilute suspensions, Stokes' law predicts the settling velocity of small spheres in fluid, either air or water. This originates due to the strength of viscous forces at the surface of the particle providing the majority of the retarding force. Stokes' law finds many applications in the natural sciences, and is given by:
The settling velocity (also called the "fall velocity" or "terminal velocity") is a function of the particle Reynolds number. Generally, for small particles (laminar approximation), it can be calculated with Stokes' Law. For larger particles (turbulent particle Reynolds numbers), fall velocity is calculated with the turbulent drag law.
If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes's law can be used to calculate the viscosity of the fluid.
In the analysis of a flow, it is often desirable to reduce the number of equations and/or the number of variables. The incompressible Navier–Stokes equation with mass continuity (four equations in four unknowns) can be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D.