Ads
related to: histone modifications and gene expression
Search results
Results from the WOW.Com Content Network
Histone-modifying enzymes are enzymes involved in the modification of histone substrates after protein translation and affect cellular processes including gene expression. [ 1 ] [ 2 ] To safely store the eukaryotic genome , DNA is wrapped around four core histone proteins (H3, H4, H2A, H2B), which then join to form nucleosomes .
Histone gene transcription is controlled by multiple gene regulatory proteins such as transcription factors which bind to histone promoter regions. In budding yeast, the candidate gene for activation of histone gene expression is SBF. SBF is a transcription factor that is activated in late G1 phase, when it dissociates from its repressor Whi5.
Such modifications affect the binding affinity between histones and DNA, and thus loosening or tightening the condensed DNA wrapped around histones, e.g., Methylation of specific lysine residues in H3 and H4 causes further condensation of DNA around histones, and thereby prevents binding of transcription factors to the DNA that lead to gene ...
Well characterized modifications to histones include: [3] Methylation: Both lysine and arginine residues are known to be methylated.Methylated lysines are the best understood marks of the histone code, as specific methylated lysine match well with gene expression states.
Studies on histone modifications may reveal many novel therapeutic targets. Based on different cardiac hypertrophy models, it has been demonstrated that cardiac stress can result in gene expression changes and alter cardiac function. [53] These changes are mediated through HATs/HDACs posttranslational modification signaling.
Modifications made on the histone have an effect on the genes that are expressed in a cell and this is the case when methyls are added to the histone residues by the histone methyltransferases. [14] Histone methylation plays an important role on the assembly of the heterochromatin mechanism and the maintenance of gene boundaries between genes ...
The post-translational modification of histone tails by either histone modifying complexes or chromatin remodelling complexes are interpreted by the cell and lead to complex, combinatorial transcriptional output. It is thought that a Histone code dictates the expression of genes by a complex interaction between the histones in a particular ...
Post-translational modifications of histone proteins, which include methylation, acetylation, phosphorylation, ubiquitination, and sumoylation. These modifications can either activate or repress gene expression by altering chromatin structure and accessibility of the DNA to transcriptional machinery.
Ads
related to: histone modifications and gene expression