enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero. In 830, Mahāvīra unsuccessfully tried to correct the mistake ...

  3. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The aleph numbers differ from the infinity commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...

  4. Division by infinity - Wikipedia

    en.wikipedia.org/wiki/Division_by_infinity

    The hyperbola = /.As approaches ∞, approaches 0.. In mathematics, division by infinity is division where the divisor (denominator) is ∞.In ordinary arithmetic, this does not have a well-defined meaning, since ∞ is a mathematical concept that does not correspond to a specific number, and moreover, there is no nonzero real number that, when added to itself an infinite number of times ...

  5. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a perfect number equals the sum of its proper divisors; that is, s(n) = n; an abundant number is lesser than the sum of its proper divisors; that is, s(n) > n; a highly abundant number has a sum of positive divisors that is greater than any lesser number; that is, σ(n) > σ(m) for every positive integer m < n.

  6. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]

  7. Infinite product - Wikipedia

    en.wikipedia.org/wiki/Infinite_product

    is defined to be the limit of the partial products a 1 a 2...a n as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 ...

  8. Faulhaber's formula - Wikipedia

    en.wikipedia.org/wiki/Faulhaber's_formula

    Since a = n(n + 1)/2, these formulae show that for an odd power (greater than 1), the sum is a polynomial in n having factors n 2 and (n + 1) 2, while for an even power the polynomial has factors n, n + 1/2 and n + 1.

  9. Singly and doubly even - Wikipedia

    en.wikipedia.org/wiki/Singly_and_doubly_even

    For an integer n, the 2-order of n (also called valuation) is the largest natural number ν such that 2 ν divides n. This definition applies to positive and negative numbers n, although some authors restrict it to positive n; and one may define the 2-order of 0 to be infinity (see also parity of zero). [2] The 2-order of n is written ν 2 (n ...