Search results
Results from the WOW.Com Content Network
Polymorphism can be distinguished by when the implementation is selected: statically (at compile time) or dynamically (at run time, typically via a virtual function). This is known respectively as static dispatch and dynamic dispatch, and the corresponding forms of polymorphism are accordingly called static polymorphism and dynamic polymorphism.
Roberts (p. 171) gives a related example in Java, using a Class to represent a stack frame. The example given is a solution to the Tower of Hanoi problem wherein a stack simulates polymorphic recursion with a beginning, temporary and ending nested stack substitution structure. [5]
C++ does not have the keyword super that a subclass can use in Java to invoke the superclass version of a method that it wants to override. Instead, the name of the parent or base class is used followed by the scope resolution operator. For example, the following code presents two classes, the base class Rectangle, and the derived class Box.
The following example demonstrates how to describe types that can be compared to each other and use this as typing information in polymorphic functions. The Test.min function uses simple bounded quantification and does not ensure the objects are mutually comparable, in contrast with the Test.fMin function which uses F-bounded quantification.
Impredicative polymorphism (also called first-class polymorphism) is the most powerful form of parametric polymorphism. [1]: 340 In formal logic, a definition is said to be impredicative if it is self-referential; in type theory, it refers to the ability for a type to be in the domain of a quantifier it contains. This allows the instantiation ...
Multiple dispatch or multimethods is a feature of some programming languages in which a function or method can be dynamically dispatched based on the run-time (dynamic) type or, in the more general case, some other attribute of more than one of its arguments. [1]
It is common, for example, in scientific computing, where it allows computing representations of mathematical objects to be manipulated with the same syntax as on paper. Operator overloading does not change the expressive power of a language (with functions), as it can be emulated using function calls.
As an example, an abstract base class MathSymbol may provide a pure virtual function doOperation(), and derived classes Plus and Minus implement doOperation() to provide concrete implementations. Implementing doOperation() would not make sense in the MathSymbol class, as MathSymbol is an abstract concept whose behaviour is defined solely for ...