Search results
Results from the WOW.Com Content Network
In thermodynamics, the enthalpy of sublimation, or heat of sublimation, is the heat required to sublimate (change from solid to gas) one mole of a substance at a given combination of temperature and pressure, usually standard temperature and pressure (STP). It is equal to the cohesive energy of the solid.
Sublimation is caused by the absorption of heat which provides enough energy for some molecules to overcome the attractive forces of their neighbors and escape into the vapor phase. Since the process requires additional energy, sublimation is an endothermic change.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
Enthalpy of fusion or melting. This applies to the transition of a solid to a liquid and is designated ΔH m. Enthalpy of vaporization. This applies to the transition of a liquid to a vapor and is designated ΔH v. Enthalpy of sublimation. This applies to the transition of a solid to a vapor and is designated ΔH s.
Enthalpy change of sublimation at 273.15 K, Δ sub H: 51.1 kJ/mol Std entropy change of sublimation at 273.15 K, 1 bar, Δ sub S ~144 J/(mol·K) Molal freezing point constant: −1.858 °C kg/mol Molal boiling point constant: 0.512 °C kg/mol Solid properties Std enthalpy change of formation, Δ f H o solid: −291.83 kJ/mol Standard molar ...
At the moment of a large enough meteor or comet impact, bolide detonation, a nuclear fission, thermonuclear fusion, or theoretical antimatter weapon detonation, a flux of so many gamma ray, x-ray, ultraviolet, visual light and heat photons strikes matter in a such brief amount of time (a great number of high-energy photons, many overlapping in ...
The Knudsen cell is used to measure the vapor pressures of a solid with very low vapor pressure. Such a solid forms a vapor at low pressure by sublimation.The vapor slowly effuses through the pinhole, and the loss of mass is proportional to the vapor pressure and can be used to determine this pressure. [1]