Search results
Results from the WOW.Com Content Network
Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF in the conductor. A current through any conductor creates a circular magnetic field around the conductor due to Ampere's law. [3]
The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid.
The electric current that arises in the simplest textbook situations would be classified as "free current"—for example, the current that passes through a wire or battery. In contrast, "bound current" arises in the context of bulk materials that can be magnetized and/or polarized. (All materials can to some extent.)
In more visual terms, the magnetic flux through the wire loop is proportional to the number of magnetic field lines that pass through the loop. When the flux changes—because B changes, or because the wire loop is moved or deformed, or both—Faraday's law of induction says that the wire loop acquires an emf , defined as the energy available ...
A more general technique, called loop analysis (with the corresponding network variables called loop currents) can be applied to any circuit, planar or not [citation needed]. Mesh analysis and loop analysis both make systematic use of Kirchhoff’s voltage law to arrive at a set of equations guaranteed to be solvable if the circuit has a ...
The pressure transmitter modulates the current on the loop to send the signal to the strip chart recorder, but does not in itself supply power to the loop and so is passive. Another loop may contain two passive chart recorders, a passive pressure transmitter, and a 24 V battery (the battery is the active device). Note that a 4-wire instrument ...
As an example, they really don't want to see men playing in women's sports. You can have a—and this is one: They don't want to see, as another example, open borders. They want to see people come in.
The circle diagram (also known as Heyland diagram or Heyland circle) is the graphical representation of the performance of the electrical machine [1] [2] [3] drawn in terms of the locus of the machine's input voltage and current. [4] It was first conceived by Alexander Heyland in 1894 and Bernhard Arthur Behrend in 1895.