enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.

  3. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Suppose that, when the rock is lowered into the water, it displaces water of weight 3 newtons. The force it then exerts on the string from which it hangs would be 10 newtons minus the 3 newtons of buoyant force: 10 − 3 = 7 newtons. Buoyancy reduces the apparent weight of objects that have sunk completely to the sea-floor.

  4. Displacement (fluid) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(fluid)

    The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [1] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2]

  5. Stream power - Wikipedia

    en.wikipedia.org/wiki/Stream_power

    Where τ is the shear stress, S is the slope of the water, ρ is the density of water (1000 kg/m 3), g is acceleration due to gravity (9.8 m/s 2). [14] Shear stress can be used to compute the unit stream power using the formula = Where V is the velocity of the water in the stream. [14]

  6. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    For a water–air interface (with σ = 0.074 N/m and ρ = 1000 kg/m 3) the waves can be approximated as pure capillary waves – dominated by surface-tension effects – for wavelengths less than 0.4 cm (0.2 in). For wavelengths above 7 cm (3 in) the waves are to good approximation pure surface gravity waves with very little surface-tension ...

  7. Specific weight - Wikipedia

    en.wikipedia.org/wiki/Specific_weight

    The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...

  8. Specific force - Wikipedia

    en.wikipedia.org/wiki/Specific_force

    It can also be called mass-specific weight (weight per unit mass), as the weight of an object is equal to the magnitude of the gravity force acting on it. The g-force is an instance of specific force measured in units of the standard gravity (g) instead of m/s², i.e., in multiples of g (e.g., "3 g").

  9. Capillary length - Wikipedia

    en.wikipedia.org/wiki/Capillary_length

    The capillary length will vary for different liquids and different conditions. Here is a picture of a water droplet on a lotus leaf. If the temperature is 20 o then = 2.71mm . The capillary length or capillary constant is a length scaling factor that relates gravity and surface tension.