Search results
Results from the WOW.Com Content Network
In uniform scaling with a non-zero scale factor, all non-zero vectors retain their direction (as seen from the origin), or all have the direction reversed, depending on the sign of the scaling factor. In non-uniform scaling only the vectors that belong to an eigenspace will retain their direction. A vector that is the sum of two or more non ...
Records follow a uniform format, and there are no structures for indexing or recognizing relationships between records. The file is simple. A flat file can be a plain text file (e.g. csv, txt or tsv), or a binary file. Relationships can be inferred from the data in the database, but the database format itself does not make those relationships ...
The SIFT key samples generated at the larger scale are given twice the weight of those at the smaller scale. This means that the larger scale is in effect able to filter the most likely neighbors for checking at the smaller scale. This also improves recognition performance by giving more weight to the least-noisy scale.
The second requirement ensures that the average of the corresponding distribution is equal to that of the sample used. If K is a kernel, then so is the function K* defined by K*(u) = λK(λu), where λ > 0. This can be used to select a scale that is appropriate for the data.
The sampling theory of Shannon can be generalized for the case of nonuniform samples, that is, samples not taken equally spaced in time. The Shannon sampling theory for non-uniform sampling states that a band-limited signal can be perfectly reconstructed from its samples if the average sampling rate satisfies the Nyquist condition. [1]
An extension of metric multidimensional scaling, in which the target space is an arbitrary smooth non-Euclidean space. In cases where the dissimilarities are distances on a surface and the target space is another surface, GMDS allows finding the minimum-distortion embedding of one surface into another. [5]
Scaling of Navier–Stokes equation refers to the process of selecting the proper spatial scales – for a certain type of flow – to be used in the non-dimensionalization of the equation. Since the resulting equations need to be dimensionless, a suitable combination of parameters and constants of the equations and flow (domain ...
In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes. The method was invented by John Platt in the context of support vector machines , [ 1 ] replacing an earlier method by Vapnik , but can be applied to other classification models. [ 2 ]