Search results
Results from the WOW.Com Content Network
The hinge theorem holds in Euclidean spaces and more generally in simply connected non-positively curved space forms.. It can be also extended from plane Euclidean geometry to higher dimension Euclidean spaces (e.g., to tetrahedra and more generally to simplices), as has been done for orthocentric tetrahedra (i.e., tetrahedra in which altitudes are concurrent) [2] and more generally for ...
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
ErdÅ‘s–Mordell inequality; Euler's theorem in geometry; Gromov's inequality for complex projective space; Gromov's systolic inequality for essential manifolds; Hadamard's inequality; Hadwiger–Finsler inequality; Hinge theorem; Hitchin–Thorpe inequality; Isoperimetric inequality; Jordan's inequality; Jung's theorem; Loewner's torus ...
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
The hinge loss is a convex function, so many of the usual convex optimizers used in machine learning can work with it. It is not differentiable , but has a subgradient with respect to model parameters w of a linear SVM with score function y = w ⋅ x {\displaystyle y=\mathbf {w} \cdot \mathbf {x} } that is given by
For example, the sum of the three angles α + β + γ depends on the size of the triangle. In addition, similar triangles cannot be unequal, so the problem of constructing a triangle with specified three angles has a unique solution.
The theorem and proof are due to E. H. Lieb, [9] Thm 6, where he obtains this theorem as a corollary of Lieb's concavity Theorem. The most direct proof is due to H. Epstein; [13] see M.B. Ruskai papers, [14] [15] for a review of this argument.
For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...