Search results
Results from the WOW.Com Content Network
A simple application of dimensional analysis to mathematics is in computing the form of the volume of an n-ball (the solid ball in n dimensions), or the area of its surface, the n-sphere: being an n-dimensional figure, the volume scales as x n, while the surface area, being (n − 1)-dimensional, scales as x n−1.
Although named for Edgar Buckingham, the π theorem was first proved by the French mathematician Joseph Bertrand in 1878. [1] Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena.
Principal Component Analysis is another technique that breaks down in high dimensions; more precisely, under appropriate conditions, the leading eigenvector of the sample covariance matrix is an inconsistent estimator of its population counterpart when the ratio of the number of variables to the number of observations is bounded away from zero ...
For example, in the two-dimensional case, the normal line to a curve at a given point is the line perpendicular to the tangent line to the curve at the point. In the three-dimensional case a surface normal, or simply normal, to a surface at a point P is a vector that is perpendicular to the tangent plane to that surface at P.
In statistics, econometrics and related fields, multidimensional analysis (MDA) is a data analysis process that groups data into two categories: data dimensions and measurements. For example, a data set consisting of the number of wins for a single football team at each of several years is a single-dimensional (in this case, longitudinal) data ...
Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space).
Real high-dimensional data is typically sparse, and tends to have relevant low dimensional features. One task of TDA is to provide a precise characterization of this fact. For example, the trajectory of a simple predator-prey system governed by the Lotka–Volterra equations [1] forms a closed circle in state space. TDA provides tools to detect ...
A portion of the two dimensional grid used for Discretization is shown below: Graph of 2 dimensional plot. In addition to the east (E) and west (W) neighbors, a general grid node P, now also has north (N) and south (S) neighbors. The same notation is used here for all faces and cell dimensions as in one dimensional analysis.