enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    The most common form of proof by mathematical induction requires proving in the induction step that (() (+)) whereupon the induction principle "automates" n applications of this step in getting from P(0) to P(n). This could be called "predecessor induction" because each step proves something about a number from something about that number's ...

  3. Induction, bounding and least number principles - Wikipedia

    en.wikipedia.org/wiki/Induction,_bounding_and...

    In first-order arithmetic, the induction principles, bounding principles, and least number principles are three related families of first-order principles, which may or may not hold in nonstandard models of arithmetic. These principles are often used in reverse mathematics to calibrate the axiomatic strength of theorems.

  4. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    Download as PDF; Printable version ... By the principle of mathematical induction, the statement is true for all natural numbers n. Proof by binomial theorem ...

  5. Peano axioms - Wikipedia

    en.wikipedia.org/wiki/Peano_axioms

    The ninth, final, axiom is a second-order statement of the principle of mathematical induction over the natural numbers, which makes this formulation close to second-order arithmetic. A weaker first-order system is obtained by explicitly adding the addition and multiplication operation symbols and replacing the second-order induction axiom with ...

  6. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    By the principle of mathematical induction it follows that the result is true for all natural numbers. Now, S(0) is clearly true since cos(0x) + i sin(0x) = 1 + 0i = 1. Finally, for the negative integer cases, we consider an exponent of −n for natural n.

  7. Structural induction - Wikipedia

    en.wikipedia.org/wiki/Structural_induction

    Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .

  8. Principle of mathematical induction - Wikipedia

    en.wikipedia.org/?title=Principle_of...

    Principle of mathematical induction. Add languages. Add links. Article; ... Download QR code; Print/export Download as PDF; Printable version;

  9. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. [15]