enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.

  3. Icositetragon - Wikipedia

    en.wikipedia.org/wiki/Icositetragon

    A regular triangle, octagon, and icositetragon can completely fill a plane vertex. An icositetragram is a 24-sided star polygon. There are 3 regular forms given by Schläfli symbols: {24/5}, {24/7}, and {24/11}. There are also 7 regular star figures using the same vertex arrangement: 2{12}, 3{8}, 4{6}, 6{4}, 8{3}, 3{8/3}, and 2{12/5}.

  4. Hexadecagon - Wikipedia

    en.wikipedia.org/wiki/Hexadecagon

    Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [ 4 ] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi.

  5. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex or star .

  6. Apeirogon - Wikipedia

    en.wikipedia.org/wiki/Apeirogon

    Given a point A 0 in a Euclidean space and a translation S, define the point A i to be the point obtained from i applications of the translation S to A 0, so A i = S i (A 0).The set of vertices A i with i any integer, together with edges connecting adjacent vertices, is a sequence of equal-length segments of a line, and is called the regular apeirogon as defined by H. S. M. Coxeter.

  7. Digon - Wikipedia

    en.wikipedia.org/wiki/Digon

    A regular digon has both angles equal and both sides equal and is represented by Schläfli symbol {2}. It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, when it forms a lune. The digon is the simplest abstract polytope of rank 2. A truncated digon, t{2} is a square, {4}. An alternated digon, h{2} is a ...

  8. Triacontagon - Wikipedia

    en.wikipedia.org/wiki/Triacontagon

    Regular triacontagon with given circumcircle. D is the midpoint of AM, DC = DF, and CF, which is the side length of the regular pentagon, is E 25 E 1.Since 1/30 = 1/5 - 1/6, the difference between the arcs subtended by the sides of a regular pentagon and hexagon (E 25 E 1 and E 25 A) is that of the regular triacontagon, AE 1.

  9. Heptadecagon - Wikipedia

    en.wikipedia.org/wiki/Heptadecagon

    Publication by C. F. Gauss in Intelligenzblatt der allgemeinen Literatur-Zeitung. As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. [1]