enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    Log probabilities are thus practical for computations, and have an intuitive interpretation in terms of information theory: the negative expected value of the log probabilities is the information entropy of an event. Similarly, likelihoods are often transformed to the log scale, and the corresponding log-likelihood can be interpreted as the ...

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Interpreting negative log-probability as information content or surprisal, the support (log-likelihood) of a model, given an event, is the negative of the surprisal of the event, given the model: a model is supported by an event to the extent that the event is unsurprising, given the model.

  4. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The corresponding probability of the value labeled "1" can vary between 0 (certainly the value "0") and 1 (certainly the value "1"), hence the labeling; [2] the function that converts log-odds to probability is the logistic function, hence the name.

  6. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability. Final (post-test) probability: Therefore, bulging flanks increases the probability of ascites from 40% to about 55% (i.e., 40% + 15% = 55%, which is within 2% of the exact probability of 57%).

  7. Probability distribution fitting - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution...

    Probability distribution fitting or simply distribution fitting is the fitting of a probability distribution to a series of data concerning the repeated measurement of a variable phenomenon. The aim of distribution fitting is to predict the probability or to forecast the frequency of occurrence of the magnitude of the phenomenon in a certain ...

  8. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    For example: If the null model has 1 parameter and a log-likelihood of −8024 and the alternative model has 3 parameters and a log-likelihood of −8012, then the probability of this difference is that of chi-squared value of (()) = with = degrees of freedom, and is equal to .

  9. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    The true probability is the true label, and the given distribution is the predicted value of the current model. This is also known as the log loss (or logarithmic loss [4] or logistic loss); [5] the terms "log loss" and "cross-entropy loss" are used interchangeably. [6]