enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The log-likelihood is also particularly useful for exponential families of distributions, which include many of the common parametric probability distributions. The probability distribution function (and thus likelihood function) for exponential families contain products of factors involving exponentiation. The logarithm of such a function is a ...

  4. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    A probability distribution is not uniquely determined by the moments E[X n] = e nμ + ⁠ 1 / 2 ⁠ n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution. [citation needed]

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is [ 2 ] [ 3 ] f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2 ...

  6. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    The product of independent random variables X and Y may belong to the same family of distribution as X and Y: Bernoulli distribution and log-normal distribution. Example: If X 1 and X 2 are independent log-normal random variables with parameters (μ 1, σ 2 1) and (μ 2, σ 2 2) respectively, then X 1 X 2 is a log-normal random variable with ...

  7. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    In probability and statistics, the log-logistic distribution (known as the Fisk distribution in economics) is a continuous probability distribution for a non-negative random variable. It is used in survival analysis as a parametric model for events whose rate increases initially and decreases later, as, for example, mortality rate from cancer ...

  8. Probability distribution fitting - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution...

    When the larger values tend to be farther away from the mean than the smaller values, one has a skew distribution to the right (i.e. there is positive skewness), one may for example select the log-normal distribution (i.e. the log values of the data are normally distributed), the log-logistic distribution (i.e. the log values of the data follow ...

  9. Log-t distribution - Wikipedia

    en.wikipedia.org/wiki/Log-t_distribution

    The log-t distribution has the probability density function: (, ^, ^) = (+) ^ (+ (⁡ ^ ^)) +,where ^ is the location parameter of the underlying (non-standardized) Student's t-distribution, ^ is the scale parameter of the underlying (non-standardized) Student's t-distribution, and is the number of degrees of freedom of the underlying Student's t-distribution. [1]