Search results
Results from the WOW.Com Content Network
Visualization of deep and shallow water waves by relating wavelength to depth to bed. deep water – for a water depth larger than half the wavelength, h > 1 / 2 λ, the phase speed of the waves is hardly influenced by depth (this is the case for most wind waves on the sea and ocean surface), [9]
As a result, the surface elevation of deep-water waves is to a good approximation trochoidal, as already noted by Stokes (1847). [8] Stokes further observed, that although (in this Eulerian description) the third-order orbital velocity field consists of a circular motion at each point, the Lagrangian paths of fluid parcels are not closed ...
Stokes drift under periodic waves in deep water, for a period T = 5 s and a mean water depth of 25 m. Left: instantaneous horizontal flow velocities. Right: average flow velocities. Black solid line: average Eulerian velocity; red dashed line: average Lagrangian velocity, as derived from the Generalized Lagrangian Mean (GLM).
In shallow water, the group velocity is equal to the shallow-water phase velocity. This is because shallow water waves are not dispersive. In deep water, the group velocity is equal to half the phase velocity: {{math|c g = 1 / 2 c p. [7] The group velocity also turns out to be the energy transport velocity.
Orbital velocity may refer to the following: The orbital angular velocity; The orbital speed of a revolving body in a gravitational field. The velocity of particles due to wave motion, such as those in wind waves; The equivalent velocity of a bound electron needed to produce its orbital kinetic energy
Individual waves in deep water break when the wave steepness—the ratio of the wave height H to the wavelength λ—exceeds about 0.17, so for H > 0.17 λ. In shallow water, with the water depth small compared to the wavelength, the individual waves break when their wave height H is larger than 0.8 times the water depth h, that is H > 0.8 h. [25]
The phase velocity c p (blue) and group velocity c g (red) as a function of water depth h for surface gravity waves of constant frequency, according to Airy wave theory. Quantities have been made dimensionless using the gravitational acceleration g and period T, with the deep-water wavelength given by L 0 = gT 2 /(2π) and the deep-water phase ...
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.