Search results
Results from the WOW.Com Content Network
Calcium hydroxide is modestly soluble in water, as seen for many dihydroxides. Its solubility increases from 0.66 g/L at 100 °C to 1.89 g/L at 0 °C. [8] Its solubility product K sp of 5.02 × 10 −6 at 25 °C, [1] its dissociation in water is large enough that its solutions are basic according to the following dissolution reaction:
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Carbonatation is a slow process that occurs in concrete where lime (CaO, or Ca(OH) 2 ) in the cement reacts with carbon dioxide (CO 2) from the air and forms calcium carbonate. The water in the pores of Portland cement concrete is normally alkaline with a pH in the range of 12.5 to 13.5.
CaO + H 2 O → Ca(OH) 2 Ca(OH) 2 + CO 2 → CaCO 3 + H 2 O. In a laboratory, calcium carbonate can easily be crystallized from calcium chloride (CaCl 2), by placing an aqueous solution of CaCl 2 in a desiccator alongside ammonium carbonate [NH 4] 2 CO 3. [10] In the desiccator, ammonium carbonate is exposed to air and decomposes into ammonia ...
An aqueous solution containing 120 mg NaHCO 3 (baking soda) per litre of water will contain 1.4285 mmol/l of bicarbonate, since the molar mass of baking soda is 84.007 g/mol. This is equivalent in carbonate hardness to a solution containing 0.71423 mmol/L of (calcium) carbonate, or 71.485 mg/L of calcium carbonate (molar mass 100.09 g/mol).
Burning (calcination) of calcium carbonate in a lime kiln above 900 °C (1,650 °F) [4] converts it into the highly caustic material burnt lime, unslaked lime or quicklime (calcium oxide) and, through subsequent addition of water, into the less caustic (but still strongly alkaline) slaked lime or hydrated lime (calcium hydroxide, Ca(OH) 2), the ...
Attempts to prepare compounds such as solid calcium bicarbonate by evaporating its solution to dryness invariably yield instead the solid calcium carbonate: [1] Ca(HCO 3) 2 → CO 2 (g) + H 2 O(l) + CaCO 3 (s). Very few solid bicarbonates other than those of the alkali metals (other than ammonium bicarbonate) are known to exist. [clarification ...
The alkali–carbonate reaction is an alteration process first suspected in the 1950s in Canada for the degradation of concrete containing dolomite aggregates. [1] [2]Alkali from the cement might react with the dolomite crystals present in the aggregate inducing the production of brucite, (MgOH) 2, and calcite (CaCO 3).