Search results
Results from the WOW.Com Content Network
The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. [1] Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution. [2] [3] [4] [5]
Electrophilic aromatic substitution (S E Ar) is an organic reaction in which an atom that is attached to an aromatic system (usually hydrogen) is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration , aromatic halogenation , aromatic sulfonation , alkylation Friedel–Crafts ...
In electrophilic substitution in aromatic compounds, an atom appended to the aromatic ring, usually hydrogen, is replaced by an electrophile. The most important reactions of this type that take place are aromatic nitration, aromatic halogenation, aromatic sulfonation and acylation and alkylating Friedel-Crafts reactions. It further consists of ...
Two common modes of Lewis acid catalysis in reactions with polar mechanisms. In reactions with polar mechanisms, Lewis acid catalysis often involves binding of the catalyst to Lewis basic heteroatoms and withdrawing electron density, which in turn facilitates heterolytic bond cleavage (in the case of Friedel-Crafts reaction) or directly activates the substrate toward nucleophilic attack (in ...
The lithiation is a nucleophilic aromatic substitution and the subsequent reaction to the sulfoxide an electrophilic aromatic substitution. In the final step tert-butyllithium acts as a nucleophile in another nucleophilic aromatic substitution through an anionic intermediate. Scheme 4. DOM application ref. Clayden 2006
For example, Friedel–Crafts acylation uses acetyl chloride (CH 3 COCl) as the agent and aluminum chloride (AlCl 3) as a catalyst to add an acetyl group to benzene: [2] Friedel-Crafts acylation of benzene by ethanoyl chloride. This reaction is an example of electrophilic aromatic substitution.
This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system. Halogenation of benzene where X is the halogen, catalyst represents the catalyst (if needed) and HX represents the protonated base. A few types of aromatic compounds, such as phenol, will react without a catalyst, but ...
Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to ...