enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  3. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  4. Optimal instruments - Wikipedia

    en.wikipedia.org/wiki/Optimal_instruments

    To estimate parameters of a conditional moment model, the statistician can derive an expectation function (defining "moment conditions") and use the generalized method of moments (GMM). However, there are infinitely many moment conditions that can be generated from a single model; optimal instruments provide the most efficient moment conditions.

  5. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  6. Empirical likelihood - Wikipedia

    en.wikipedia.org/wiki/Empirical_likelihood

    An empirical likelihood ratio function is defined and used to obtain confidence intervals parameter of interest θ similar to parametric likelihood ratio confidence intervals. [7] [8] Let L(F) be the empirical likelihood of function , then the ELR would be: = / (). Consider sets of the form

  7. Lars Peter Hansen - Wikipedia

    en.wikipedia.org/wiki/Lars_Peter_Hansen

    Hansen is best known as the developer of the econometric technique generalized method of moments (GMM) and has written and co-authored papers applying GMM to analyze economic models in numerous fields including labor economics, international finance, finance and macroeconomics. This method has been widely adopted in economics and other fields ...

  8. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.

  9. Arellano–Bond estimator - Wikipedia

    en.wikipedia.org/wiki/Arellano–Bond_estimator

    This method is known as system GMM. Note that the consistency and efficiency of the estimator depends on validity of the assumption that the errors can be decomposed as in equation (1). This assumption can be tested in empirical applications and likelihood ratio test often reject the simple random effects decomposition. [2]