Search results
Results from the WOW.Com Content Network
The examples 1 and 2 denote different terms, differing only in where the parentheses are placed. They have different meanings: example 1 is a function definition, while example 2 is a function application. The lambda variable x is a placeholder in both examples. Here, example 1 defines a function .
The names "lambda abstraction", "lambda function", and "lambda expression" refer to the notation of function abstraction in lambda calculus, where the usual function f (x) = M would be written (λx. M), and where M is an expression that uses x. Compare to the Python syntax of lambda x: M.
For example ((call/cc f) e2) is equivalent to applying f to the current continuation of the expression. The current continuation is given by replacing (call/cc f) by a variable c bound by a lambda abstraction, so the current continuation is (lambda (c) (c e2)). Applying the function f to it gives the final result (f (lambda (c) (c e2))).
In this example, the lambda expression (lambda (book) (>= (book-sales book) threshold)) appears within the function best-selling-books. When the lambda expression is evaluated, Scheme creates a closure consisting of the code for the lambda expression and a reference to the threshold variable, which is a free variable inside the lambda expression.
A typed lambda calculus is a typed formalism that uses the lambda-symbol to denote anonymous function abstraction.In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below).
An example of such a function is the function that returns 0 for all even integers, and 1 for all odd integers. In lambda calculus , from a computational point of view, applying a fixed-point combinator to an identity function or an idempotent function typically results in non-terminating computation.
The supplied function is first applied to a supplied parameter and then successively to its own result. The end result is not the numeral 3 (unless the supplied parameter happens to be 0 and the function is a successor function). The function itself, and not its end result, is the Church numeral 3.
Dirichlet lambda function, λ(s) = (1 – 2 −s)ζ(s) where ζ is the Riemann zeta function; Liouville function, λ(n) = (–1) Ω(n) Von Mangoldt function, Λ(n) = log p if n is a positive power of the prime p; Modular lambda function, λ(τ), a highly symmetric holomorphic function on the complex upper half-plane