Search results
Results from the WOW.Com Content Network
Inspired by—but distinct from—the Hamiltonian of classical mechanics, the Hamiltonian of optimal control theory was developed by Lev Pontryagin as part of his maximum principle. [2] Pontryagin proved that a necessary condition for solving the optimal control problem is that the control should be chosen so as to optimize the Hamiltonian. [3]
Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. [1] It has numerous applications in science, engineering and operations research.
Widely regarded as a milestone in optimal control theory, the significance of the maximum principle lies in the fact that maximizing the Hamiltonian is much easier than the original infinite-dimensional control problem; rather than maximizing over a function space, the problem is converted to a pointwise optimization. [8]
Its solution is the value function of the optimal control problem which, once known, can be used to obtain the optimal control by taking the maximizer (or minimizer) of the Hamiltonian involved in the HJB equation. [2] [3] The equation is a result of the theory of dynamic programming which was pioneered in the 1950s by Richard Bellman and ...
Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide. Help. Pages in category "Optimal control" The following 43 ...
The relationship between these two value functions is called the "Bellman equation". In this approach, the optimal policy in the last time period is specified in advance as a function of the state variable's value at that time, and the resulting optimal value of the objective function is thus expressed in terms of that value of the state variable.
The optimal control solution is unaffected if zero-mean, i.i.d. additive shocks also appear in the state equation, so long as they are uncorrelated with the parameters in the A and B matrices. But if they are so correlated, then the optimal control solution for each period contains an additional additive constant vector.
List of the main control techniques. Optimal control is a particular control technique in which the control signal optimizes a certain "cost index": for example, in the case of a satellite, the jet thrusts needed to bring it to desired trajectory that consume the least amount of fuel. Two optimal control design methods have been widely used in ...