Search results
Results from the WOW.Com Content Network
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
When only a sample of data from a population is available, the term standard deviation of the sample or sample standard deviation can refer to either the above-mentioned quantity as applied to those data, or to a modified quantity that is an unbiased estimate of the population standard deviation (the standard deviation of the entire population).
Firstly, while the sample variance (using Bessel's correction) is an unbiased estimator of the population variance, its square root, the sample standard deviation, is a biased estimate of the population standard deviation; because the square root is a concave function, the bias is downward, by Jensen's inequality.
One way of seeing that this is a biased estimator of the standard deviation of the population is to start from the result that s 2 is an unbiased estimator for the variance σ 2 of the underlying population if that variance exists and the sample values are drawn independently with replacement. The square root is a nonlinear function, and only ...
If the set is a sample from the whole population, then the unbiased sample variance can be calculated as 1017.538 that is the sum of the squared deviations about the mean of the sample, divided by 11 instead of 12. A function VAR.S in Microsoft Excel gives the unbiased sample variance while VAR.P is for population variance.
The probability density of the standard Gaussian distribution (standard normal distribution, with zero mean and unit variance) is often denoted with the Greek letter . [10] The alternative form of the Greek letter phi, φ {\displaystyle \varphi } , is also used quite often.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value.. For example, robust estimators of scale are used to estimate the population standard deviation, generally by multiplying by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation.