Search results
Results from the WOW.Com Content Network
This equation quickly enables the calculation of the Gibbs free energy change for a chemical reaction at any temperature T 2 with knowledge of just the standard Gibbs free energy change of formation and the standard enthalpy change of formation for the individual components. Also, using the reaction isotherm equation, [8] that is
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
Miedema's model is a semi-empirical approach for estimating the heat of formation of solid or liquid metal alloys and compounds in the framework of thermodynamic calculations for metals and minerals. [1]
If the enthalpy changes are known for all the equations in the sequence, their sum will be the enthalpy change for the net equation. If the net enthalpy change is negative ( Δ H net < 0 {\displaystyle \Delta H_{\text{net}}<0} ), the reaction is exothermic and is more likely to be spontaneous ; positive Δ H values correspond to endothermic ...
The enthalpy of formation of one mole of ethane gas refers to the reaction 2 C (graphite) + 3 H 2 (g) → C 2 H 6 (g). Standard enthalpy of hydrogenation is defined as the enthalpy change observed when one mole of an unsaturated compound reacts with an excess of hydrogen to become fully saturated.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
Benson group-increment theory (BGIT), group-increment theory, or Benson group additivity uses the experimentally calculated heat of formation for individual groups of atoms to calculate the entire heat of formation for a molecule under investigation. This can be a quick and convenient way to determine theoretical heats of formation without ...