Search results
Results from the WOW.Com Content Network
where U is the oil's kinematic viscosity at 40 °C (104 °F), Y is the oil's kinematic viscosity at 100 °C (212 °F), and L and H are the viscosities at 40 °C for two hypothetical oils of VI 0 and 100 respectively, having the same viscosity at 100 °C as the oil whose VI we are trying to determine.
Extensional viscosity can be measured with various rheometers that apply extensional stress. Volume viscosity can be measured with an acoustic rheometer. Apparent viscosity is a calculation derived from tests performed on drilling fluid used in oil or gas well development. These calculations and tests help engineers develop and maintain the ...
A simple and widespread empirical correlation for liquid viscosity is a two-parameter exponential: = / This equation was first proposed in 1913, and is commonly known as the Andrade equation (named after British physicist Edward Andrade). It accurately describes many liquids over a range of temperatures.
The three viscosity equations now coalesce to a single viscosity equation = = because a nondimensional scaling is used for the entire viscosity equation. The standard nondimensionality reasoning goes like this: Creating nondimensional variables (with subscript D) by scaling gives
A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.
Volume viscosity (also called bulk viscosity, or second viscosity or, dilatational viscosity) is a material property relevant for characterizing fluid flow. Common symbols are ζ , μ ′ , μ b , κ {\displaystyle \zeta ,\mu ',\mu _{\mathrm {b} },\kappa } or ξ {\displaystyle \xi } .
The Vogel–Fulcher–Tammann equation, also known as Vogel–Fulcher–Tammann–Hesse equation or Vogel–Fulcher equation (abbreviated: VFT equation), is used to describe the viscosity of liquids as a function of temperature, and especially its strongly temperature dependent variation in the supercooled regime, upon approaching the glass transition.
Following these equations, the apparent viscosity is calculated for the apparent shear rate. For a Newtonian liquid, the apparent viscosity is the same as the true viscosity, and the single shear-rate measurement is sufficient. For non-Newtonian liquids, the apparent viscosity is not true viscosity.