Search results
Results from the WOW.Com Content Network
When working with Bayesian models there are a series of related tasks that need to be addressed besides inference itself: Diagnoses of the quality of the inference, this is needed when using numerical methods such as Markov chain Monte Carlo techniques; Model criticism, including evaluations of both model assumptions and model predictions
In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. [1] A greedy optimisation procedure and thus fast version were subsequently developed.
In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.
Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...
Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.
Bayesian inference using Gibbs sampling (BUGS) is a statistical software for performing Bayesian inference using Markov chain Monte Carlo (MCMC) methods. It was developed by David Spiegelhalter at the Medical Research Council Biostatistics Unit in Cambridge in 1989 and released as free software in 1991.
Bayesian programming [2] is a formal and concrete implementation of this "robot". Bayesian programming may also be seen as an algebraic formalism to specify graphical models such as, for instance, Bayesian networks, dynamic Bayesian networks, Kalman filters or hidden Markov models.