enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative group - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group

    The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Weisstein, Eric W. "Modulo Multiplication Group". MathWorld. Weisstein, Eric W. "Primitive Root". MathWorld. Web-based tool to interactively compute group tables by John Jones; OEIS sequence A033948 (Numbers that have a primitive root (the multiplicative group modulo n is cyclic))

  4. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.

  5. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.

  6. Group scheme - Wikipedia

    en.wikipedia.org/wiki/Group_scheme

    In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field.

  7. Algebraic group - Wikipedia

    en.wikipedia.org/wiki/Algebraic_group

    Among the examples above the additive, multiplicative groups and the general and special linear groups are affine. Using the action of an affine algebraic group on its coordinate ring it can be shown that every affine algebraic group is a linear (or matrix group), meaning that it is isomorphic to an algebraic subgroup of the general linear group.

  8. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...

  9. Group ring - Wikipedia

    en.wikipedia.org/wiki/Group_ring

    Let be a group, written multiplicatively, and let be a ring. The group ring of over , which we will denote by [], or simply , is the set of mappings : of finite support (() is nonzero for only finitely many elements ), where the module scalar product of a scalar in and a mapping is defined as the mapping (), and the module group sum of two mappings and is defined as the mapping () + ().