Search results
Results from the WOW.Com Content Network
A signal-flow graph or signal-flowgraph (SFG), invented by Claude Shannon, [1] but often called a Mason graph after Samuel Jefferson Mason who coined the term, [2] is a specialized flow graph, a directed graph in which nodes represent system variables, and branches (edges, arcs, or arrows) represent functional connections between pairs of nodes.
Signal-flow graph connecting the inputs x (left) to the outputs y that depend on them (right) for a "butterfly" step of a radix-2 Cooley–Tukey FFT. This diagram resembles a butterfly (as in the morpho butterfly shown for comparison), hence the name, although in some countries it is also called the hourglass diagram.
An example of a signal-flow graph Flow graph for three simultaneous equations. The edges incident on each node are colored differently just for emphasis. An example of a flow graph connected to some starting equations is presented. The set of equations should be consistent and linearly independent. An example of such a set is: [2]
Mason's Rule is also particularly useful for deriving the z-domain transfer function of discrete networks that have inner feedback loops embedded within outer feedback loops (nested loops). If the discrete network can be drawn as a signal flow graph, then the application of Mason's Rule will give that network's z-domain H(z) transfer function.
Signal flow thus removes the detriments pervasive of conventional feedback network analyses but additionally, it proves to be computationally efficient as well." Following up on this suggestion, a signal-flow graph for a negative-feedback amplifier is shown in the figure, which is patterned after one by D'Amico et al.. [23]
Date/Time Thumbnail Dimensions User Comment; current: 00:20, 16 January 2015: 621 × 763 (43 KB): Pierre5018: Signal names and second SFG representation: 00:19, 16 January 2015
Figure 1: Functional flow block diagram format. [1] A functional flow block diagram (FFBD) is a multi-tier, time-sequenced, step-by-step flow diagram of a system's functional flow. [2] The term "functional" in this context is different from its use in functional programming or in mathematics, where pairing "functional" with "flow" would be ...
A propagation graph is a signal flow graph in which vertices represent transmitters, receivers or scatterers. Edges in the graph model propagation conditions between vertices. Propagation graph models were initially developed by Troels Pedersen, et al. for multipath propagation in scenarios with multiple scattering, such as indoor radio ...