enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Branching factor - Wikipedia

    en.wikipedia.org/wiki/Branching_factor

    For example, if the branching factor is 10, then there will be 10 nodes one level down from the current position, 10 2 (or 100) nodes two levels down, 10 3 (or 1,000) nodes three levels down, and so on. The higher the branching factor, the faster this "explosion" occurs. The branching factor can be cut down by a pruning algorithm.

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    For example, if n = 171 × p × q where p < q are very large primes, trial division will quickly produce the factors 3 and 19 but will take p divisions to find the next factor. As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will ...

  4. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor. Thus, testing with 2, 3, and 5 suffices up to n = 48 not just 25 because the square of the next prime is 49, and below n = 25 just 2 and 3 are sufficient.

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...

  6. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  7. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    Pollard's rho algorithm is an algorithm for integer factorization. It was invented by John Pollard in 1975. [ 1 ] It uses only a small amount of space, and its expected running time is proportional to the square root of the smallest prime factor of the composite number being factorized.

  8. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    Dixon's method replaces the condition "is the square of an integer" with the much weaker one "has only small prime factors"; for example, there are 292 squares smaller than 84923; 662 numbers smaller than 84923 whose prime factors are only 2,3,5 or 7; and 4767 whose prime factors are all less than 30.

  9. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    The integer factorization problem is in NP and in co-NP (and even in UP and co-UP [23]). If the problem is NP-complete, the polynomial time hierarchy will collapse to its first level (i.e., NP = co-NP). The most efficient known algorithm for integer factorization is the general number field sieve, which takes expected time

  1. Related searches factor tree of 62 and 30 in calculator soup java example test

    factor tree of 62 and 30 in calculator soup java example test questions