Search results
Results from the WOW.Com Content Network
An integral domain is a ring for which the set of nonzero elements is a commutative monoid under multiplication (because a monoid must be closed under multiplication). An integral domain is a nonzero commutative ring in which for every nonzero element r, the function that maps each element x of the ring to the product xr is injective.
A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain. In general, for an integral domain A, the following conditions are equivalent: A is a UFD.
Discrete integral calculus is the study of the definitions, properties, and applications of the Riemann sums. The process of finding the value of a sum is called integration . In technical language, integral calculus studies a certain linear operator .
An integral domain is a UFD if and only if it is a GCD domain (i.e., a domain where every two elements have a greatest common divisor) satisfying the ascending chain condition on principal ideals. An integral domain is a Bézout domain if and only if any two elements in it have a gcd that is a linear combination of the two.
In commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. [1] They are a higher-dimensional generalization of Dedekind domains, which are exactly the Krull domains of dimension at most 1.
In particular if k is a field, the ring of integers, or a principal ideal domain, then the polynomial ring [, …,] is regular. In the case of a field, this is Hilbert's syzygy theorem. Any localization of a regular ring is regular as well. A regular ring is reduced [b] but need not be an integral domain. For example, the product of two regular ...
In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. [1] ( Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor).
If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ( quadrature or squaring ...