enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Cauchy_sequence

    The utility of Cauchy sequences lies in the fact that in a complete metric space (one where all such sequences are known to converge to a limit), the criterion for convergence depends only on the terms of the sequence itself, as opposed to the definition of convergence, which uses the limit value as well as the terms.

  3. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    Cauchy's convergence test can only be used in complete metric spaces (such as and ), which are spaces where all Cauchy sequences converge. This is because we need only show that its elements become arbitrarily close to each other after a finite progression in the sequence to prove the series converges.

  4. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    Even more generally, Cauchy spaces are spaces in which Cauchy filters may be defined. Convergence implies "Cauchy convergence", and Cauchy convergence, together with the existence of a convergent subsequence implies convergence. The concept of completeness of metric spaces, and its generalizations is defined in terms of Cauchy sequences.

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  6. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    The notion of a Cauchy sequence is important in the study of sequences in metric spaces, and, in particular, in real analysis. One particularly important result in real analysis is the Cauchy criterion for convergence of sequences: a sequence of real numbers is convergent if and only if it is a Cauchy sequence.

  7. Complete metric space - Wikipedia

    en.wikipedia.org/wiki/Complete_metric_space

    (This limit exists because the real numbers are complete.) This is only a pseudometric, not yet a metric, since two different Cauchy sequences may have the distance 0. But "having distance 0" is an equivalence relation on the set of all Cauchy sequences, and the set of equivalence classes is a metric space, the completion of M.

  8. Cauchy's limit theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_limit_theorem

    The arithmetic means in Cauchy's limit theorem are also called Cesàro means. While Cauchy's limit theorem implies that for a convergent series its Cesàro means converge as well, the converse is not true. That is the Cesàro means may converge while the original sequence does not.

  9. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The Cauchy convergence criterion states that a series ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} converges if and only if the sequence of partial sums is a Cauchy sequence .