Search results
Results from the WOW.Com Content Network
The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.. In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. [1]
Gas exchange is the physical process by which gases move passively by diffusion ... The corresponding partial pressures of oxygen and carbon dioxide in the ambient ...
The alveolar gas equation is the method for calculating partial pressure of alveolar oxygen (p A O 2). The equation is used in assessing if the lungs are properly transferring oxygen into the blood .
An illustration of Dalton's law using the gases of air at sea level. Dalton's law (also called Dalton's law of partial pressures) states that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases. [1]
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
The alveolar oxygen partial pressure is lower than the atmospheric O 2 partial pressure for two reasons.. Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg.
The sum of partial pressures of the gas that the diver breathes must necessarily balance with the sum of partial pressures in the lung gas. In the alveoli the gas has been humidified by a partial pressure of approximately 63 mbar (47 mmHg) and has gained about 55 mbar (41 mmHg) carbon dioxide from the venous blood.
According to Sazonov and Shaw, [7] the dimensionless Bunsen coefficient is defined as "the volume of saturating gas, V1, reduced to T° = 273.15 K, p° = 1 bar, which is absorbed by unit volume V 2 * of pure solvent at the temperature of measurement and partial pressure of 1 bar." If the gas is ideal, the pressure cancels out, and the ...