enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topological group - Wikipedia

    en.wikipedia.org/wiki/Topological_group

    An action of a topological group G on a topological space X is a group action of G on X such that the corresponding function G × X → X is continuous. Likewise, a representation of a topological group G on a real or complex topological vector space V is a continuous action of G on V such that for each g ∈ G, the map v ↦ gv from V to ...

  3. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

  4. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    Homotopy groups are such a way of associating groups to topological spaces. A torus A sphere. That link between topology and groups lets mathematicians apply insights from group theory to topology. For example, if two topological objects have different homotopy groups, they cannot have the same topological structure—a fact that may be ...

  5. Étale fundamental group - Wikipedia

    en.wikipedia.org/wiki/Étale_fundamental_group

    In algebraic topology, the fundamental group (,) of a pointed topological space (,) is defined as the group of homotopy classes of loops based at . This definition works well for spaces such as real and complex manifolds , but gives undesirable results for an algebraic variety with the Zariski topology .

  6. Category:Topological groups - Wikipedia

    en.wikipedia.org/wiki/Category:Topological_groups

    In mathematics, a topological group G is a group that is also a topological space such that the group multiplication G × G→G and the inverse operation G→G are continuous maps. Subcategories This category has the following 2 subcategories, out of 2 total.

  7. Principal homogeneous space - Wikipedia

    en.wikipedia.org/wiki/Principal_homogeneous_space

    In mathematics, a principal homogeneous space, [1] or torsor, for a group G is a homogeneous space X for G in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group G is a non-empty set X on which G acts freely and transitively (meaning that, for any x, y in X, there exists a unique g in G such that x·g = y, where · denotes the (right ...

  8. Graph homology - Wikipedia

    en.wikipedia.org/wiki/Graph_homology

    C 1 is the free abelian group generated by the set of directed edges {a,b,c,d}. Each element of C 1 is called a 1-dimensional chain. The three cycles mentioned above are 1-dimensional chains, and indeed the relation (a+b+d) + (c-d) = (a+b+c) holds in the group C 1. Most elements of C 1 are not

  9. Locally compact abelian group - Wikipedia

    en.wikipedia.org/wiki/Locally_compact_abelian_group

    However, if the group is a separable locally compact abelian group, then the dual group is metrizable. This is analogous to the dual space in linear algebra: just as for a vector space V {\displaystyle V} over a field K {\displaystyle K} , the dual space is H o m ( V , K ) {\displaystyle \mathrm {Hom} (V,K)} , so too is the dual group H o m ( G ...