Search results
Results from the WOW.Com Content Network
In molecular biology, the term double helix [1] refers to the structure formed by double-stranded molecules of nucleic acids such as DNA. The double helical structure of a nucleic acid complex arises as a consequence of its secondary structure , and is a fundamental component in determining its tertiary structure .
Other advances in molecular biology stemming from the discovery of the DNA double helix eventually led to ways to sequence genes. James Watson directed the Human Genome Project at the National Institutes of Health. [7] The ability to sequence and manipulate DNA is now central to the biotechnology industry and modern medicine.
DNA replication also works by using a DNA template, the DNA double helix unwinds during replication, exposing unpaired bases for new nucleotides to hydrogen bond to. Gene synthesis, however, does not require a DNA template and genes are assembled de novo. DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The ...
The tertiary arrangement of DNA's double helix in space includes B-DNA, A-DNA, and Z-DNA. Triple-stranded DNA structures have been demonstrated in repetitive polypurine:polypyrimidine Microsatellite sequences and Satellite DNA. B-DNA is the most common form of DNA in vivo and is a more narrow, elongated helix than A-DNA. Its wide major groove ...
The double helix is an important tertiary structure in nucleic acid molecules which is intimately connected with the molecule's secondary structure. A double helix is formed by regions of many consecutive base pairs. The nucleic acid double helix is a spiral polymer, usually right-handed, containing two nucleotide strands which base pair together.
DNA exists as a double-stranded structure, with both strands coiled together to form the characteristic double helix. Each single strand of DNA is a chain of four types of nucleotides. Nucleotides in DNA contain a deoxyribose sugar, a phosphate, and a nucleobase.
The chemical structure of DNA is insufficient to understand the complexity of the 3D structures of DNA. In contrast, animated molecular models allow one to visually explore the three-dimensional (3D) structure of DNA. The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as ...
Complementarity between two antiparallel strands of DNA. The top strand goes from the left to the right and the lower strand goes from the right to the left lining them up. Left: the nucleotide base pairs that can form in double-stranded DNA. Between A and T there are two hydrogen bonds, while there are three between C and G.