Search results
Results from the WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The math template formats mathematical formulas generated using HTML or wiki markup. (It does not accept the AMS-LaTeX markup that <math> does.) The template uses the texhtml class by default for inline text style formulas, which aims to match the size of the serif font with the surrounding sans-serif font (see below).
Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]
The uniqueness and the zeros of trigonometric series was an active area of research in 19th century Europe. First, Georg Cantor proved that if a trigonometric series is convergent to a function on the interval [,], which is identically zero, or more generally, is nonzero on at most finitely many points, then the coefficients of the series are all zero.
Illustration of the sum formula. Draw a horizontal line (the x -axis); mark an origin O. Draw a line from O at an angle α {\displaystyle \alpha } above the horizontal line and a second line at an angle β {\displaystyle \beta } above that; the angle between the second line and the x -axis is α + β . {\displaystyle \alpha +\beta .}
The first few terms of the sin series are ()! + ()! ()! + which can be recognized as resembling the Taylor series for sin x, with (s) n standing in the place of x n. In analytic number theory it is of interest to sum
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β. Ptolemy's theorem is important in the history of trigonometric identities, as it is how results equivalent to the sum and difference formulas ...