Search results
Results from the WOW.Com Content Network
The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for R the field of residues modulo a prime number p, and χ the Legendre symbol.In this case Gauss proved that G(χ) = p 1 ⁄ 2 or ip 1 ⁄ 2 for p congruent to 1 or 3 modulo 4 respectively (the quadratic Gauss sum can also be evaluated by Fourier analysis as well as by contour integration).
In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum.
In mathematics, the Gross–Koblitz formula, introduced by Gross and Koblitz expresses a Gauss sum using a product of values of the p-adic gamma function. It is an analog of the Chowla–Selberg formula for the usual gamma function. It implies the Hasse–Davenport relation and generalizes the Stickelberger theorem.
The Hasse–Davenport relations, introduced by Davenport and Hasse , are two related identities for Gauss sums, one called the Hasse–Davenport lifting relation, and the other called the Hasse–Davenport product relation. The Hasse–Davenport lifting relation is an equality in number theory relating Gauss sums over different fields.
In mathematics, an elliptic Gauss sum is an analog of a Gauss sum depending on an elliptic curve with complex multiplication. The quadratic residue symbol in a Gauss sum is replaced by a higher residue symbol such as a cubic or quartic residue symbol, and the exponential function in a Gauss sum is replaced by an elliptic function.
In mathematics, Gauss congruence is a property held by certain sequences of integers, including the Lucas numbers and the divisor sum sequence. Sequences satisfying this property are also known as Dold sequences, Fermat sequences, Newton sequences, and realizable sequences. [ 1 ]
The Gaussian binomial coefficients are defined by: [1] = () (+) () ()where m and r are non-negative integers. If r > m, this evaluates to 0.For r = 0, the value is 1 since both the numerator and denominator are empty products.
HCMUSSH was formerly known as the College of Letters, University of Saigon (Vietnamese: Trường Đại học Văn khoa, Viện Đại học Sài Gòn). It is now the biggest research and training center in the field of social sciences and humanities in Southern Vietnam. In October 2021, HCMUSSH officially claimed their autonomy in the ...