enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. QuTiP - Wikipedia

    en.wikipedia.org/wiki/QuTiP

    QuTiP, short for the Quantum Toolbox in Python, is an open-source computational physics software library for simulating quantum systems, particularly open quantum systems. [1] [2] QuTiP allows simulation of Hamiltonians with arbitrary time-dependence, allowing simulation of situations of interest in quantum optics, ion trapping, superconducting circuits and quantum nanomechanical resonators.

  3. Quil (instruction set architecture) - Wikipedia

    en.wikipedia.org/wiki/Quil_(instruction_set...

    Quil has support for defining possibly parametrized gates in matrix form (the language does not include a way to verify that the matrices are unitary, which is a necessary condition for the physical realizability of the defined gate) and their application on qubits.

  4. Quantum programming - Wikipedia

    en.wikipedia.org/wiki/Quantum_programming

    Quantum programming is the process of designing or assembling sequences of instructions, called quantum circuits, using gates, switches, and operators to manipulate a quantum system for a desired outcome or results of a given experiment.

  5. Quantum error correction - Wikipedia

    en.wikipedia.org/wiki/Quantum_error_correction

    That these codes allow indeed for quantum computations of arbitrary length is the content of the quantum threshold theorem, found by Michael Ben-Or and Dorit Aharonov, which asserts that you can correct for all errors if you concatenate quantum codes such as the CSS codes—i.e. re-encode each logical qubit by the same code again, and so on, on ...

  6. Quantum Trajectory Theory - Wikipedia

    en.wikipedia.org/wiki/Quantum_Trajectory_Theory

    Quantum Trajectory Theory (QTT) is a formulation of quantum mechanics used for simulating open quantum systems, quantum dissipation and single quantum systems. [1] It was developed by Howard Carmichael in the early 1990s around the same time as the similar formulation, known as the quantum jump method or Monte Carlo wave function (MCWF) method, developed by Dalibard, Castin and Mølmer. [2]

  7. Path integral formulation - Wikipedia

    en.wikipedia.org/wiki/Path_integral_formulation

    The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

  8. Rectangular potential barrier - Wikipedia

    en.wikipedia.org/wiki/Rectangular_potential_barrier

    In quantum mechanics, the rectangular (or, at times, square) potential barrier is a standard one-dimensional problem that demonstrates the phenomena of wave-mechanical tunneling (also called "quantum tunneling") and wave-mechanical reflection.

  9. Path integral Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Path_integral_Monte_Carlo

    Path integral Monte Carlo (PIMC) is a quantum Monte Carlo method used to solve quantum statistical mechanics problems numerically within the path integral formulation. The application of Monte Carlo methods to path integral simulations of condensed matter systems was first pursued in a key paper by John A. Barker. [1] [2]