Search results
Results from the WOW.Com Content Network
In propositional logic, tautology is either of two commonly used rules of replacement. [ 1 ] [ 2 ] [ 3 ] The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs .
Tautological consequence can also be defined as ∧ ∧ ... ∧ → is a substitution instance of a tautology, with the same effect. [2]It follows from the definition that if a proposition p is a contradiction then p tautologically implies every proposition, because there is no truth valuation that causes p to be true and so the definition of tautological implication is trivially satisfied.
A formula of propositional logic is a tautology if the formula itself is always true, regardless of which valuation is used for the propositional variables. There are infinitely many tautologies. In many of the following examples A represents the statement "object X is bound", B represents "object X is a book", and C represents "object X is on ...
However, the term tautology is also commonly used to refer to what could more specifically be called truth-functional tautologies. Whereas a tautology or logical truth is true solely because of the logical terms it contains in general (e.g. " every ", " some ", and "is"), a truth-functional tautology is true because of the logical terms it ...
0. The null assumption, i.e., we are proving a tautology 1. Our first subproof: we assume the l.h.s. to show the r.h.s. follows 2. A subsubproof: we are free to assume what we want. Here we aim for a reductio ad absurdum 3. We now have a contradiction 4. We are allowed to prefix the statement that "caused" the contradiction with a not 5.
Post's solution to the problem is described in the demonstration "An Example of a Successful Absolute Proof of Consistency", offered by Ernest Nagel and James R. Newman in their 1958 Gödel's Proof. They too observed a problem with respect to the notion of "contradiction" with its usual "truth values" of "truth" and "falsity". They observed that:
In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally ...
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]