Search results
Results from the WOW.Com Content Network
The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space. (A reflection would not preserve handedness; for instance, it ...
The information in this section can be found in. [1] The rigidity matrix can be viewed as a linear transformation from | | to | |.The domain of this transformation is the set of | | column vectors, called velocity or displacements vectors, denoted by ′, and the image is the set of | | edge distortion vectors, denoted by ′.
In mathematics, a rigid collection C of mathematical objects (for instance sets or functions) is one in which every c ∈ C is uniquely determined by less information about c than one would expect. The above statement does not define a mathematical property ; instead, it describes in what sense the adjective "rigid" is typically used in ...
In geometry, isomorphisms and automorphisms are often called transformations, for example rigid transformations, affine transformations, projective transformations. Category theory , which can be viewed as a formalization of the concept of mapping between structures, provides a language that may be used to unify the approach to these different ...
For example, if the xy-system is translated a distance h to the right and a distance k upward, then P will appear to have been translated a distance h to the left and a distance k downward in the x'y'-system . A translation of axes in more than two dimensions is defined similarly. [3] A translation of axes is a rigid transformation, but not a ...
For example, to study the equations of ellipses and hyperbolas, the foci are usually located on one of the axes and are situated symmetrically with respect to the origin. If the curve (hyperbola, parabola , ellipse, etc.) is not situated conveniently with respect to the axes, the coordinate system should be changed to place the curve at a ...
In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given (at least locally) as the kernel of a differential one-form, and the non-integrability ...
In mechanics, the dual quaternions are applied as a number system to represent rigid transformations in three dimensions. [1] Since the space of dual quaternions is 8-dimensional and a rigid transformation has six real degrees of freedom, three for translations and three for rotations, dual quaternions obeying two algebraic constraints are used ...