Search results
Results from the WOW.Com Content Network
Let G be a graph with vertex set V. Let F be a field, and f a function from V to F k such that xy is an edge of G if and only if f(x)·f(y) ≥ t. This is the dot product representation of G. The number t is called the dot product threshold, and the smallest possible value of k is called the dot product dimension. [1]
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
For every subset F of edges, the dot product 1 E(v) · 1 F represents the number of edges in F that are adjacent to v. Therefore, the following statements are equivalent: A subset F of edges represents a matching in G; For every node v in V: 1 E(v) · 1 F ≤ 1. A G · 1 F ≤ 1 V. The cardinality of a set F of edges is the dot product 1 E · 1 F.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic. The effect that a given dyadic has on other vectors can provide indirect physical or geometric interpretations. Dyadic notation was first established by Josiah Willard Gibbs in 1884. The notation and ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.