Search results
Results from the WOW.Com Content Network
This is a list of notable theorems. Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures; List of data structures; List of derivatives and integrals in alternative calculi; List of equations; List of fundamental theorems; List of hypotheses; List of inequalities; Lists of ...
Cartan's theorems A and B; Cayley–Bacharach theorem; Chasles–Cayley–Brill formula; Chasles' theorem (geometry) Chevalley–Iwahori–Nagata theorem; Chevalley's structure theorem; Chow's lemma; Chow's moving lemma; Clifford's theorem on special divisors
0–9. 2π theorem; A. Almgren regularity theorem; Anderson's theorem; B. Bang's theorem on tetrahedra; ... Campbell's theorem (geometry) Castelnuovo–de Franchis ...
Euler's theorem; Five color theorem; Five lemma; Fundamental theorem of arithmetic; Gauss–Markov theorem (brief pointer to proof) Gödel's incompleteness theorem. Gödel's first incompleteness theorem; Gödel's second incompleteness theorem; Goodstein's theorem; Green's theorem (to do) Green's theorem when D is a simple region; Heine–Borel ...
Yuri Manin (1937–2023) – algebraic geometry and diophantine geometry; Vladimir Arnold (1937–2010) – algebraic geometry; Ernest Vinberg (1937–2020) J. H. Conway (1937–2020) – sphere packing, recreational geometry; Robin Hartshorne (1938–) – geometry, algebraic geometry; Phillip Griffiths (1938–) – algebraic geometry ...
In mathematics, a fundamental theorem is a theorem which is considered to be central and conceptually important for some topic. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus . [ 1 ]
This following is a list of lemmas (or, "lemmata", i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms , list of theorems and list of conjectures .
In geometry, Poncelet's porism (sometimes referred to as Poncelet's closure theorem) states that whenever a polygon is inscribed in one conic section and circumscribes another one, the polygon must be part of an infinite family of polygons that are all inscribed in and circumscribe the same two conics.