Search results
Results from the WOW.Com Content Network
This is a list of notable theorems. Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures; List of data structures; List of derivatives and integrals in alternative calculi; List of equations; List of fundamental theorems; List of hypotheses; List of inequalities; Lists of ...
Cartan's theorems A and B; Cayley–Bacharach theorem; Chasles–Cayley–Brill formula; Chasles' theorem (geometry) Chevalley–Iwahori–Nagata theorem; Chevalley's structure theorem; Chow's lemma; Chow's moving lemma; Clifford's theorem on special divisors
Yuri Manin (1937–2023) – algebraic geometry and diophantine geometry; Vladimir Arnold (1937–2010) – algebraic geometry; Ernest Vinberg (1937–2020) J. H. Conway (1937–2020) – sphere packing, recreational geometry; Robin Hartshorne (1938–) – geometry, algebraic geometry; Phillip Griffiths (1938–) – algebraic geometry ...
Euler's theorem; Five color theorem; Five lemma; Fundamental theorem of arithmetic; Gauss–Markov theorem (brief pointer to proof) Gödel's incompleteness theorem. Gödel's first incompleteness theorem; Gödel's second incompleteness theorem; Goodstein's theorem; Green's theorem (to do) Green's theorem when D is a simple region; Heine–Borel ...
This following is a list of lemmas (or, "lemmata", i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms , list of theorems and list of conjectures .
Ceva's theorem can be obtained from it by setting the area equal to zero and solving. The analogue of the theorem for general polygons in the plane has been known since the early nineteenth century. [9] The theorem has also been generalized to triangles on other surfaces of constant curvature. [10]
The major accomplishment of Hippocrates is that he was the first to write a systematically organized geometry textbook, called Elements (Στοιχεῖα, Stoicheia), that is, basic theorems, or building blocks of mathematical theory. From then on, mathematicians from all over the ancient world could, at least in principle, build on a common ...
The theorem of the gnomon can be used to construct a new parallelogram or rectangle of equal area to a given parallelogram or rectangle by the means of straightedge and compass constructions. This also allows the representation of a division of two numbers in geometrical terms, an important feature to reformulate geometrical problems in ...