Search results
Results from the WOW.Com Content Network
In these examples, we will take the values given as the entire population of values. The data set [100, 100, 100] has a population standard deviation of 0 and a coefficient of variation of 0 / 100 = 0; The data set [90, 100, 110] has a population standard deviation of 8.16 and a coefficient of variation of 8.16 / 100 = 0.0816
Variation is 0 if and only if all cases belong to a single category. Variation is 1 if and only if cases are evenly divided across all categories. [1] In particular, the value of these standardized indices does not depend on the number of categories or number of samples.
In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...
This term was intended to be analogous to the coefficient of variation, for describing multiplicative variation in log-normal data, but this definition of GCV has no theoretical basis as an estimate of itself (see also Coefficient of variation). Note that the geometric mean is smaller than the arithmetic mean.
Coefficient of variation (CV) used as a measure of income inequality is conducted by dividing the standard deviation of the income (square root of the variance of the incomes) by the mean of income. Coefficient of variation will be therefore lower in countries with smaller standard deviations implying more equal income distribution.
In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...
In statistics, explained variation measures the proportion to which a mathematical model accounts for the variation of a given data set. Often, variation is quantified as variance ; then, the more specific term explained variance can be used.
Analogously to how the median generalizes to the geometric median (GM) in multivariate data, MAD can be generalized to the median of distances to GM (MADGM) in n dimensions. This is done by replacing the absolute differences in one dimension by Euclidean distances of the data points to the geometric median in n dimensions. [5]