Search results
Results from the WOW.Com Content Network
Tangential quadrilateral: the four sides are tangents to an inscribed circle. A convex quadrilateral is tangential if and only if opposite sides have equal sums. Tangential trapezoid: a trapezoid where the four sides are tangents to an inscribed circle. Cyclic quadrilateral: the four vertices lie on a circumscribed circle. A convex ...
Conversely, a convex quadrilateral in which the four angle bisectors meet at a point must be tangential and the common point is the incenter. [4] According to the Pitot theorem, the two pairs of opposite sides in a tangential quadrilateral add up to the same total length, which equals the semiperimeter s of the quadrilateral:
Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.
In Euclidean geometry, a tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the incircle or inscribed circle. It is the special case of a tangential quadrilateral in which at least one pair of opposite sides are parallel.
A tangential quadrilateral is usually defined as a convex quadrilateral for which all four sides are tangent to the same inscribed circle. Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. [2]
The kites are exactly the orthodiagonal quadrilaterals that contain a circle tangent to all four of their sides; that is, the kites are the tangential orthodiagonal quadrilaterals. [1] A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram).
In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1] That is, it is a kite with a circumcircle (i.e., a cyclic kite). Thus the right kite is a convex quadrilateral and has two opposite right ...
That is, there exists a circle that is tangent to all four sides. Additionally, if a convex kite is not a rhombus, there is a circle outside the kite that is tangent to the extensions of the four sides; therefore, every convex kite that is not a rhombus is an ex-tangential quadrilateral.