enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar -valued scalar triple product and, less often, the vector -valued vector triple product .

  3. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    Cartesian product of the sets {x,y,z} and {1,2,3}In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. [1]

  4. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  5. Vertical and horizontal bundles - Wikipedia

    en.wikipedia.org/wiki/Vertical_and_horizontal...

    A simple example of a smooth fiber bundle is a Cartesian product of two manifolds. Consider the bundle B 1 := (M × N, pr 1) with bundle projection pr 1 : M × N → M : (x, y) → x. Applying the definition in the paragraph above to find the vertical bundle, we consider first a point (m,n) in M × N.

  6. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    The length of the cross product is to the length of the parallel unit vector (red) as the size of the exterior product is to the size of the reference parallelogram (light red). With the exception of the last property, the exterior product of two vectors satisfies the same properties as the area.

  7. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    For any vector space V, the projection X × V → X makes the product X × V into a "trivial" vector bundle. Vector bundles over X are required to be locally a product of X and some (fixed) vector space V: for every x in X, there is a neighborhood U of x such that the restriction of π to π −1 (U) is isomorphic [nb 11] to the trivial bundle ...

  8. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    The dot product in Cartesian coordinates (Euclidean space with an orthonormal basis set) is simply the sum of the products of components. In orthogonal coordinates, the dot product of two vectors x and y takes this familiar form when the components of the vectors are calculated in the normalized basis:

  9. Direct product - Wikipedia

    en.wikipedia.org/wiki/Direct_product

    In the special case of the category of groups, a product always exists: the underlying set of is the Cartesian product of the underlying sets of the , the group operation is componentwise multiplication, and the (homo)morphism : is the projection sending each tuple to its th coordinate.