enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

  3. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    The (total) spin quantum number has only one value for every elementary particle. Some introductory chemistry textbooks describe m s as the spin quantum number, [6] [7] and s is not mentioned since its value ⁠ 1 / 2 ⁠ is a fixed property of the electron; some even use the variable s in place of m s. [5] The two spin quantum numbers and are ...

  4. Quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Quantum_mechanics

    Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.

  5. Triplet state - Wikipedia

    en.wikipedia.org/wiki/Triplet_state

    In quantum mechanics, a triplet state, or spin triplet, is the quantum state of an object such as an electron, atom, or molecule, having a quantum spin S = 1. It has three allowed values of the spin's projection along a given axis m S = −1, 0, or +1, giving the name "triplet".

  6. Singlet state - Wikipedia

    en.wikipedia.org/wiki/Singlet_state

    In quantum mechanics, a singlet state usually refers to a system in which all electrons are paired. The term 'singlet' originally meant a linked set of particles whose net angular momentum is zero, that is, whose overall spin quantum number =. As a result, there is only one spectral line of a singlet state.

  7. Bra–ket notation - Wikipedia

    en.wikipedia.org/wiki/Bra–ket_notation

    In quantum mechanics, a quantum state is typically represented as an element of a complex Hilbert space, for example, the infinite-dimensional vector space of all possible wavefunctions (square integrable functions mapping each point of 3D space to a complex number) or some more abstract Hilbert space constructed more algebraically.

  8. Quantum superposition - Wikipedia

    en.wikipedia.org/wiki/Quantum_superposition

    Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position.

  9. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    It is a postulate of quantum mechanics that a physically observable quantity of a system, such as position, momentum, or spin, is represented by a linear Hermitian operator on the state space. The possible outcomes of measurement of the quantity are the eigenvalues of the operator. [ 18 ]