enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    There are no Pythagorean triangles in which the hypotenuse and one leg are the legs of another Pythagorean triangle; this is one of the equivalent forms of Fermat's right triangle theorem. [12]: p. 14 Each primitive Pythagorean triangle has a ratio of area, K, to squared semiperimeter, s, that is unique to itself and is given by [22]

  4. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Triangles based on Pythagorean triples are Heronian, meaning they have integer area as well as integer sides. The possible use of the 3 : 4 : 5 triangle in Ancient Egypt , with the supposed use of a knotted rope to lay out such a triangle, and the question whether Pythagoras' theorem was known at that time, have been much debated. [ 3 ]

  5. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    The legs and hypotenuse of a right triangle satisfy the Pythagorean theorem: the sum of the areas of the squares on two legs is the area of the square on the hypotenuse, + =. If the lengths of all three sides of a right triangle are integers, the triangle is called a Pythagorean triangle and its side lengths are collectively known as a ...

  6. Bride's Chair - Wikipedia

    en.wikipedia.org/wiki/Bride's_Chair

    The Bride's chair proof of the Pythagorean theorem, that is, the proof of the Pythagorean theorem based on the Bride's Chair diagram, is given below. The proof has been severely criticized by the German philosopher Arthur Schopenhauer as being unnecessarily complicated, with construction lines drawn here and there and a long line of deductive ...

  7. Kepler triangle - Wikipedia

    en.wikipedia.org/wiki/Kepler_triangle

    Conversely, in any right triangle whose squared edge lengths are in geometric progression with any ratio , the Pythagorean theorem implies that this ratio obeys the identity = +. Therefore, the ratio must be the unique positive solution to this equation, the golden ratio, and the triangle must be a Kepler triangle.

  8. Xuan tu - Wikipedia

    en.wikipedia.org/wiki/Xuan_tu

    Xuan tu or Hsuan thu (simplified Chinese: 弦图; traditional Chinese: 絃圖; pinyin: xuántú; Wade–Giles: hsüan 2 tʻu 2) is a diagram given in the ancient Chinese astronomical and mathematical text Zhoubi Suanjing indicating a proof of the Pythagorean theorem. [1] Zhoubi Suanjing is one of the oldest Chinese texts on mathematics. The ...

  9. Cathetus - Wikipedia

    en.wikipedia.org/wiki/Cathetus

    In a right triangle, the length of a cathetus is the geometric mean of the length of the adjacent segment cut by the altitude to the hypotenuse and the length of the whole hypotenuse. By the Pythagorean theorem, the sum of the squares of the lengths of the catheti is equal to the square of the length of the hypotenuse.